On the Holomorphy Conjecture for Igusa's Local Zeta Function

نویسندگان

  • Jan Denef
  • Willem Veys
چکیده

To a polynomial f over a p{adic eld K and a character of the group of units of the valuation ring of K one associates Igusa's local zeta function Z(s; f;), which is a meromorphic function on C. Several theorems and conjectures relate the poles of Z(s; f;) to the monodromy of f; the so{called holomorphy conjecture states roughly that if the order of does not divide the order of any eigenvalue of monodromy of f, then Z(s; f;) is holomorphic on C. We prove mainly that if the holomorphy conjecture is true for f(x 1 ;. .. ; x n?1), then it is true for f(x 1 ;. .. ; x n?1) + x k n with k 3, and we give some applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphy of Igusa’s and Topological Zeta Functions for Homogeneous Polynomials

Let F be a number field and f ∈ F [x1, . . . , xn] \ F . To any completion K of F and any character κ of the group of units of the valuation ring of K one associates Igusa’s local zeta function Z(κ, f, s). The holomorphy conjecture states that for all except a finite number of completions K of F we have that if the order of κ does not divide the order of any eigenvalue of the local monodromy of...

متن کامل

0 Fe b 20 06 THE MODULO p AND p 2 CASES OF THE IGUSA CONJECTURE ON EXPONENTIAL SUMS AND THE MOTIVIC OSCILLATION INDEX

— We prove the modulo p and modulo p 2 cases of the Igusa conjecture on exponential sums. This conjecture predicts specific uniform bounds in the homogeneous polynomial case of exponential sums modulo p m when p and m vary. We introduce the motivic oscillation index of a polynomial and prove the possibly stronger, analogue bounds for m = 1, 2 using this index instead of the bounds of the conjec...

متن کامل

Zeta Functions for Curves and Log Canonical Models

The topological zeta function and Igusa's local zeta function are respectively a geometrical invariant associated to a complex polynomial f and an arithmetical invariant associated to a polynomial f over a p{adic eld. When f is a polynomial in two variables we prove a formula for both zeta functions in terms of the so{called log canonical model of f ?1 f0g in A 2. This result yields moreover a ...

متن کامل

The Topological Zeta Function Associated to a Function on a Normal Surface Germ

We associate to a regular function f on a normal surface germ (S; 0) an invariant, called the topological zeta function, which generalizes the same invariant for a plane curve germ; by deenition it is a rational function in one variable. We study its poles and their relation with the local monodromy of f , in particular we prove thègeneralized holomorphy conjecture'. We give a formula for this ...

متن کامل

Local Zeta Functions and Linear Feedback Shift Registers

We give a polynomial time algorithm for computing the Igusa local zeta function Z(s, f) attached to a polynomial f (x) ∈ Z[x], in one variable, with splitting field Q, and a prime number p. We also propose a new class of Linear Feedback Shift Registers based on the computation of Igusa's local zeta function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995